How to Use Kafka In Spring Boot?

16 minutes read

To use Kafka in Spring Boot, you need to follow the following steps:

  1. Dependency Setup: Add the required dependencies for Kafka and Spring Boot in your project's build file. This can be done using Maven or Gradle.
  2. Configuration: Configure Kafka properties in the application.properties or application.yml file. Set the bootstrap servers' address, topics, and other necessary Kafka configurations.
  3. Producer Setup: Create a KafkaProducer bean that will send messages to Kafka topics. You can use the KafkaTemplate class provided by the Spring Kafka library to simplify this process. Autowire the KafkaTemplate in your code and use it to send messages to Kafka.
  4. Consumer Setup: Create a KafkaListener bean that will listen to specific Kafka topics and consume messages. Use the @KafkaListener annotation to define the topics and specify the method that should be called when a message is received. You can have multiple KafkaListener beans listening to different topics.
  5. Serialization/Deserialization: Specify serializers and deserializers for the keys and values of messages being sent and received by Kafka. Spring Boot provides default serializers and deserializers, but you can customize them if needed.
  6. Testing: Write integration tests for your Kafka producers and consumers to ensure they are functioning correctly. You can use frameworks like JUnit and Mockito to mock dependencies and verify the behavior of your Kafka components.


By following these steps, you can successfully integrate Kafka into your Spring Boot application and leverage its messaging capabilities for building robust and scalable systems.

Best Spring Boot Books to Read in April 2024

1
Full Stack Development with Spring Boot and React: Build modern and scalable web applications using the power of Java and React, 3rd Edition

Rating is 5 out of 5

Full Stack Development with Spring Boot and React: Build modern and scalable web applications using the power of Java and React, 3rd Edition

2
Spring Boot Persistence Best Practices: Optimize Java Persistence Performance in Spring Boot Applications

Rating is 4.9 out of 5

Spring Boot Persistence Best Practices: Optimize Java Persistence Performance in Spring Boot Applications

3
Spring Boot in Action

Rating is 4.8 out of 5

Spring Boot in Action

4
Spring Boot: Up and Running: Building Cloud Native Java and Kotlin Applications

Rating is 4.7 out of 5

Spring Boot: Up and Running: Building Cloud Native Java and Kotlin Applications

5
Learning Spring Boot 3.0: Simplify the development of production-grade applications using Java and Spring, 3rd Edition

Rating is 4.6 out of 5

Learning Spring Boot 3.0: Simplify the development of production-grade applications using Java and Spring, 3rd Edition

6
Spring in Action, Sixth Edition

Rating is 4.5 out of 5

Spring in Action, Sixth Edition

7
Modern API Development with Spring and Spring Boot: Design highly scalable and maintainable APIs with REST, gRPC, GraphQL, and the reactive paradigm

Rating is 4.4 out of 5

Modern API Development with Spring and Spring Boot: Design highly scalable and maintainable APIs with REST, gRPC, GraphQL, and the reactive paradigm

8
Spring Boot and Angular: Hands-on full stack web development with Java, Spring, and Angular

Rating is 4.3 out of 5

Spring Boot and Angular: Hands-on full stack web development with Java, Spring, and Angular


How to handle message serialization and deserialization in Spring Boot with Kafka?

To handle message serialization and deserialization in Spring Boot with Kafka, you can follow the steps below:

  1. Define a message class: Create a class that represents your message payload. This class should contain the data you want to send in your Kafka messages.
  2. Configure the Kafka producer settings: In your Spring Boot application, configure the Kafka producer settings in the application.properties or application.yml file. Specify the bootstrap servers, key.serializer, and value.serializer properties. Example: spring.kafka.bootstrap-servers=spring.kafka.producer.key-serializer=org.apache.kafka.common.serialization.StringSerializer spring.kafka.producer.value-serializer=org.springframework.kafka.support.serializer.JsonSerializer
  3. Serialize the message: When sending a message, serialize the message object using the configured serializer. For example, if you are using the KafkaTemplate, you can call send() method and pass the serialized message object. Example: @Autowired private KafkaTemplate kafkaTemplate; public void sendMessage(MyMessage message) { kafkaTemplate.send("myTopic", message); }
  4. Configure the Kafka consumer settings: In your Spring Boot application, configure the Kafka consumer settings in the application.properties or application.yml file. Specify the bootstrap servers, key.deserializer, and value.deserializer properties. Example: spring.kafka.bootstrap-servers=spring.kafka.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer spring.kafka.consumer.value-deserializer=org.springframework.kafka.support.serializer.JsonDeserializer spring.kafka.consumer.properties.spring.json.type.mapping=:
  5. Deserialize the message: When consuming a message, the Kafka consumer will automatically deserialize the message payload using the configured deserializer. Specify the expected message class in the spring.kafka.consumer.properties.spring.json.type.mapping property. Example: @KafkaListener(topics = "myTopic", groupId = "myGroup") public void consumeMessage(MyMessage message) { // Handle the deserialized message }


By following these steps, you can handle message serialization and deserialization in Spring Boot with Kafka effectively.


How to produce messages to Kafka using Spring Boot?

To produce messages to Kafka using Spring Boot, you can follow these steps:

  1. Setup Kafka: Download and extract Apache Kafka from the official website. Start the ZooKeeper server and Kafka broker.
  2. Create a Spring Boot project: Create a new Spring Boot project or use an existing one. Add the necessary dependencies to your pom.xml file:
1
2
3
4
<dependency>
    <groupId>org.springframework.kafka</groupId>
    <artifactId>spring-kafka</artifactId>
</dependency>


  1. Configure Kafka properties: Add the following properties to your application.properties file:
1
2
3
spring.kafka.bootstrap-servers=localhost:9092
spring.kafka.producer.key-serializer=org.apache.kafka.common.serialization.StringSerializer
spring.kafka.producer.value-serializer=org.apache.kafka.common.serialization.StringSerializer


  1. Create a Kafka Producer: Create a new Java class, e.g., KafkaProducerService.java. Annotate the class with @Service and @EnableKafka annotations.
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
@Service
@EnableKafka
public class KafkaProducerService {
    
    @Autowired
    private KafkaTemplate<String, String> kafkaTemplate;

    public void sendMessage(String topic, String message) {
        kafkaTemplate.send(topic, message);
    }
}


  1. Send messages: Inject KafkaProducerService into your controller or service. Use the sendMessage() method to send messages to Kafka.
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
@RestController
public class MyController {

    @Autowired
    private KafkaProducerService kafkaProducerService;

    @PostMapping("/send-message")
    public String sendMessageToKafka(@RequestParam String topic, @RequestParam String message) {
        kafkaProducerService.sendMessage(topic, message);
        return "Message sent to Kafka successfully.";
    }
}


That's it! Now, when you send a POST request to /send-message with the appropriate topic and message parameters, the message will be produced to Kafka using Spring Boot.


Can Spring Boot be used as a Kafka producer?

Yes, Spring Boot can be used as a Kafka producer. Spring Kafka provides a convenient way to interact with Apache Kafka for both producing and consuming messages. It provides a KafkaTemplate that can be used to send messages to Kafka topics. By using the KafkaTemplate, you can easily integrate Kafka producer functionality into your Spring Boot application.

Best Cloud Providers to Host Java Spring Boot in 2024

1
AWS

Rating is 5 out of 5

AWS

2
DigitalOcean

Rating is 4.9 out of 5

DigitalOcean

3
Vultr

Rating is 4.8 out of 5

Vultr

4
Cloudways

Rating is 4.7 out of 5

Cloudways


How to configure message compression in Spring Boot with Kafka?

To configure message compression in Spring Boot with Kafka, you need to follow these steps:

  1. Add the following dependency to your pom.xml file: org.springframework.kafkaspring-kafka
  2. Open the application.properties file and add the following Kafka producer properties to enable message compression: spring.kafka.producer.compression-type=gzip You can modify the compression-type according to your preference. Supported options are none, gzip, snappy, and lz4.
  3. Create a Kafka producer configuration class to define the necessary beans: import org.apache.kafka.clients.producer.ProducerConfig; import org.apache.kafka.common.serialization.StringSerializer; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.kafka.core.DefaultKafkaProducerFactory; import org.springframework.kafka.core.KafkaTemplate; import org.springframework.kafka.core.ProducerFactory; import org.springframework.kafka.support.serializer.JsonSerializer; import java.util.HashMap; import java.util.Map; @Configuration public class KafkaConfiguration { @Bean public ProducerFactory producerFactory() { Map configProps = new HashMap<>(); configProps.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "your.bootstrap.server"); configProps.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class); configProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, JsonSerializer.class); configProps.put(ProducerConfig.COMPRESSION_TYPE_CONFIG, "gzip"); return new DefaultKafkaProducerFactory<>(configProps); } @Bean public KafkaTemplate kafkaTemplate() { return new KafkaTemplate<>(producerFactory()); } } Make sure to replace 'your.bootstrap.server' with the address of your Kafka server.
  4. Use the KafkaTemplate to send messages with compression. Spring Kafka will take care of compressing the messages based on the configuration provided.


That's it! You have now configured message compression in Spring Boot with Kafka.


How to handle large messages in Spring Boot with Kafka?

To handle large messages in Spring Boot with Kafka, you can follow these steps:

  1. Update Kafka Producer configuration: Increase the max.request.size property in your Kafka Producer configuration. This property sets the maximum size of a request that the producer will send to Kafka. Set the retries property to handle network errors when sending large messages. You can set it to a value greater than 0 to enable retries.
  2. Update Kafka Consumer configuration: Adjust the max.partition.fetch.bytes property in Kafka Consumer configuration to match the size of your large messages. This property controls the maximum amount of data fetched from a partition in a single request. Configure the fetch.max.bytes property to specify the maximum number of bytes returned for a fetch request. This property should also be set to accommodate for the size of your large messages.
  3. Split large messages into smaller chunks: If your messages exceed the maximum size allowed by Kafka (usually 1MB by default), you may need to split large messages into smaller chunks before sending them to Kafka.
  4. Implement serialization/deserialization: Use a custom serializer and deserializer that can handle large messages. For example, you can use the ByteArraySerializer and ByteArrayDeserializer provided by the Kafka client.
  5. Handle message fragmentation: Fragment large messages into smaller parts and send them as separate Kafka messages. Include a message identifier or sequence number to identify and order the fragments.
  6. Reassemble fragments at the consumer: Design your consumer to handle and reassemble the received message fragments based on message identifiers or sequence numbers.
  7. Implement proper error handling: Handle exceptions and errors that may occur during message processing or reassembling to ensure reliable processing of large messages.


By following these steps, you can effectively handle large messages in Spring Boot with Kafka.


How to configure message conversion with Spring Boot and Kafka?

To configure message conversion with Spring Boot and Kafka, follow these steps:


Step 1: Add the necessary dependencies to your pom.xml or build.gradle file. Include the Spring Kafka and the JSON converter dependencies.


For Maven:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
<dependency>
  <groupId>org.springframework.kafka</groupId>
  <artifactId>spring-kafka</artifactId>
</dependency>

<dependency>
  <groupId>org.springframework.kafka</groupId>
  <artifactId>spring-kafka-test</artifactId>
  <scope>test</scope>
</dependency>

<dependency>
  <groupId>org.springframework.kafka</groupId>
  <artifactId>spring-kafka-serializer-json</artifactId>
</dependency>


For Gradle:

1
2
3
4
5
dependencies {
  implementation 'org.springframework.kafka:spring-kafka'
  testImplementation 'org.springframework.kafka:spring-kafka-test'
  implementation 'org.springframework.kafka:spring-kafka-serializer-json'
}


Step 2: Configure the Kafka properties in your application.properties or application.yml file.


For example, in application.properties:

1
2
3
4
5
6
7
8
9
spring.kafka.bootstrap-servers=localhost:9092

# Consumer
spring.kafka.consumer.group-id=my-group
spring.kafka.consumer.auto-offset-reset=earliest

# Producer
spring.kafka.producer.key-serializer=org.apache.kafka.common.serialization.StringSerializer
spring.kafka.producer.value-serializer=org.springframework.kafka.support.serializer.JsonSerializer


For example, in application.yml:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
spring:
  kafka:
    bootstrap-servers: localhost:9092

    # Consumer
    consumer:
      group-id: my-group
      auto-offset-reset: earliest

    # Producer
    producer:
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      value-serializer: org.springframework.kafka.support.serializer.JsonSerializer


Step 3: Create a Kafka message listener using @KafkaListener annotation and use the appropriate message conversion.


For example:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.messaging.handler.annotation.Payload;

public class KafkaMessageListener {

    @KafkaListener(topics = "my-topic", groupId = "my-group")
    public void listen(@Payload MyMessage message) {
        // Process the message
    }

}


Step 4: Create a Kafka producer using the KafkaTemplate and send messages with the appropriate conversion.


For example:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;

public class KafkaProducer {

    @Autowired
    private KafkaTemplate<String, MyMessage> kafkaTemplate;

    public void send(MyMessage message) {
        kafkaTemplate.send("my-topic", message);
    }

}


That's it! Now you have configured message conversion with Spring Boot and Kafka.


How to perform integration testing for Kafka-based applications in Spring Boot?

To perform integration testing for Kafka-based applications in Spring Boot, you can follow these steps:

  1. Set up test configuration: Create a test configuration class that provides the necessary configuration for your Kafka-based application, such as Kafka broker details, producer and consumer configurations, etc. This can be done using the @TestConfiguration annotation.
  2. Use embedded Kafka: Instead of using an external Kafka broker, you can use an embedded Kafka server for testing. Spring Kafka provides an embedded Kafka server implementation called EmbeddedKafkaBroker that you can use in your tests. Configure this embedded broker in your test configuration class.
  3. Create Kafka producers and consumers: Create an instance of Kafka producer and consumer in your test configuration class. You can use the KafkaTemplate class provided by Spring Kafka to create the producer, and the KafkaListenerContainerFactory class to create the consumer.
  4. Configure the producer and consumer: Configure the producer and consumer with the necessary properties, such as topic names, message serializers/deserializers, etc. This can be done using the properties set in the test configuration class.
  5. Write test cases: Write test cases to verify the behavior of your Kafka-based application. These test cases can send messages to Kafka using the producer and assert the received messages from the consumer.
  6. Use KafkaTemplate to send messages: In your test cases, use the KafkaTemplate instance to send messages to Kafka. You can use the send method of KafkaTemplate to send a message to a specific topic.
  7. Verify message consumption: Use assertions to verify that the consumer receives the expected messages from Kafka. You can use the @KafkaListener annotation on a test-specific method to receive messages from Kafka. In the test method, you can use assertions to verify that the received messages match the expected ones.
  8. Run the tests: Run the integration tests using any testing framework, such as JUnit or TestNG.


By following these steps, you can perform integration testing for Kafka-based applications in Spring Boot.

Facebook Twitter LinkedIn Telegram Whatsapp Pocket

Related Posts:

To configure Kafka in Spring Boot, follow these steps:Start by adding the required dependencies in your Spring Boot project&#39;s pom.xml file. These dependencies include &#39;spring-kafka&#39; and &#39;kafka-clients&#39;. Create a configuration class to confi...
To integrate Spring Boot with Angular, the following steps can be followed:Create a new Spring Boot project: Start by setting up a new Spring Boot project using your preferred IDE or Spring Initializer. Include the necessary dependencies for web and data. Set ...
To connect Spring Boot to MySQL, you need to follow these steps:First, make sure you have MySQL installed and running on your system. In your Spring Boot project, open the application.properties file. Add the following properties to the file: spring.datasourc...